Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
R Soc Open Sci ; 11(4): 231074, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38660600

RESUMO

Living cells are out of equilibrium active materials. Cell-generated forces are transmitted across the cytoskeleton network and to the extracellular environment. These active force interactions shape cellular mechanical behaviour, trigger mechano-sensing, regulate cell adaptation to the microenvironment and can affect disease outcomes. In recent years, the mechanobiology community has witnessed the emergence of many experimental and theoretical approaches to study cells as mechanically active materials. In this review, we highlight recent advancements in incorporating active characteristics of cellular behaviour at different length scales into classic viscoelastic models by either adding an active tension-generating element or adjusting the resting length of an elastic element in the model. Summarizing the two groups of approaches, we will review the formulation and application of these models to understand cellular adaptation mechanisms in response to various types of mechanical stimuli, such as the effect of extracellular matrix properties and external loadings or deformations.

2.
Proc Natl Acad Sci U S A ; 119(49): e2201600119, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36454762

RESUMO

The direction in which a cell divides is set by the orientation of its mitotic spindle and is important for determining cell fate, controlling tissue shape, and maintaining tissue architecture. Divisions parallel to the epithelial plane sustain tissue expansion. By contrast, divisions perpendicular to the plane promote tissue stratification and lead to the loss of epithelial cells from the tissue-an event that has been suggested to promote metastasis. Much is known about the molecular machinery involved in orienting the spindle, but less is known about the contribution of mechanical factors, such as tissue tension, in ensuring spindle orientation in the plane of the epithelium. This is important as epithelia are continuously subjected to mechanical stresses. To explore this further, we subjected suspended epithelial monolayers devoid of extracellular matrix to varying levels of tissue tension to study the orientation of cell divisions relative to the tissue plane. This analysis revealed that lowering tissue tension by compressing epithelial monolayers or by inhibiting myosin contractility increased the frequency of out-of-plane divisions. Reciprocally, increasing tissue tension by elevating cell contractility or by tissue stretching restored accurate in-plane cell divisions. Moreover, a characterization of the geometry of cells within these epithelia suggested that spindles can sense tissue tension through its impact on tension at subcellular surfaces, independently of their shape. Overall, these data suggest that accurate spindle orientation in the plane of the epithelium relies on a threshold level of tension at intercellular junctions.


Assuntos
Células Epiteliais , Junções Intercelulares , Epitélio , Divisão Celular , Matriz Extracelular
3.
Eur Phys J E Soft Matter ; 45(11): 90, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36350421
4.
Trends Cell Biol ; 32(6): 537-551, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35190218

RESUMO

During development and in adult physiology, living tissues are continuously subjected to mechanical stresses originating either from cellular processes intrinsic to the tissue or from external forces. As a consequence, rupture is a constant risk and can arise as a result of excessive stresses or because of tissue weakening through genetic abnormalities or pathologies. Tissue fracture is a multiscale process involving the unzipping of intercellular adhesions at the molecular scale in response to stresses arising at the tissue or cellular scale that are transmitted to adhesion complexes via the cytoskeleton. In this review we detail experimental characterization and theoretical approaches for understanding the fracture of living tissues at the tissue, cellular, and molecular scales.


Assuntos
Caderinas , Citoesqueleto , Caderinas/genética , Adesão Celular/fisiologia , Humanos , Mecanotransdução Celular/fisiologia , Estresse Mecânico
5.
Rev Sci Instrum ; 93(1): 014104, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35104964

RESUMO

The process of making blood smears is common in both research and clinical settings for investigating the health of blood cells and the presence of blood-borne parasites. It is very often carried out manually. We focus here on smears for malaria diagnosis and research, which are frequently analyzed by optical microscopy and require a high quality. Automating the smear preparation promises to increase throughput and to improve the quality and consistency of the smears. We present here two devices (manual and motorized) designed to aid in the making of blood smears. These are fully documented, open-source hardware, and an important principle was to make them easily fabricated locally anywhere. Designs and assembly instructions are freely available under an open license. We also describe an image analysis pipeline for characterizing the quality of smears and use it to optimize the settings and tunable parameters in the two devices. The devices perform as well as expert human operators while not requiring a trained operator and offering potential advantages in reproducibility and standardization across facilities.


Assuntos
Malária , Microscopia , Humanos , Processamento de Imagem Assistida por Computador , Impressão Tridimensional , Reprodutibilidade dos Testes
6.
Sci Rep ; 11(1): 19357, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34588480

RESUMO

During gastrulation of the zebrafish embryo, the cap of blastoderm cells organizes into the axial body plan of the embryo with left-right symmetry and head-tail, dorsal-ventral polarities. Our labs have been interested in the mechanics of early development and have investigated whether these large-scale cell movements can be described as tissue-level mechanical strain by a tectonics-based approach. The first step is to image the positions of all nuclei from mid-epiboly to early segmentation by digital sheet light microscopy, organize the surface of the embryo into multi-cell spherical domains, construct velocity fields from the movements of these domains and extract strain rate maps from the change in density of the domains. During gastrulation, tensile/expansive and compressive strains in the axial and equatorial directions are detected as anterior and posterior expansion along the anterior-posterior axis and medial-lateral compression across the dorsal-ventral axis and corresponds to the well characterized morphological movements of convergence and extension. Following gastrulation strain is represented by localized medial expansion at the onset of segmentation and anterior expansion at the onset of neurulation. In addition to linear strain, symmetric patterns of rotation/curl are first detected in the animal hemispheres at mid-epiboly and then the vegetal hemispheres by the end of gastrulation. In embryos treated with C59, a Wnt inhibitor that inhibits head and tail extension, the axial extension and vegetal curl are absent. By analysing the temporal sequence of large-scale movements, deformations across the embryo can be attributed to a combination of epiboly and dorsal convergence-extension.


Assuntos
Padronização Corporal/fisiologia , Gastrulação/fisiologia , Animais , Benzenoacetamidas/farmacologia , Padronização Corporal/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Embrião não Mamífero/embriologia , Gastrulação/efeitos dos fármacos , Microscopia Intravital , Piridinas/farmacologia , Proteínas Wnt/antagonistas & inibidores , Proteínas Wnt/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/antagonistas & inibidores , Proteínas de Peixe-Zebra/metabolismo
7.
Neurooncol Adv ; 2(1): vdaa081, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32793884

RESUMO

BACKGROUND: Glioblastoma (GBM) is a highly aggressive incurable brain tumor. The main cause of mortality in GBM patients is the invasive rim of cells migrating away from the main tumor mass and invading healthy parts of the brain. Although the motion is driven by forces, our current understanding of the physical factors involved in glioma infiltration remains limited. This study aims to investigate the adhesion properties within and between patients' tumors on a cellular level and test whether these properties correlate with cell migration. METHODS: Six tissue samples were taken from spatially separated sections during 5-aminolevulinic acid (5-ALA) fluorescence-guided surgery. Navigated biopsy samples were collected from strongly fluorescent tumor cores, a weak fluorescent tumor rim, and nonfluorescent tumor margins. A microfluidics device was built to induce controlled shear forces to detach cells from monolayer cultures. Cells were cultured on low modulus polydimethylsiloxane representative of the stiffness of brain tissue. Cell migration and morphology were then obtained using time-lapse microscopy. RESULTS: GBM cell populations from different tumor fractions of the same patient exhibited different migratory and adhesive behaviors. These differences were associated with sampling location and amount of 5-ALA fluorescence. Cells derived from weak- and nonfluorescent tumor tissue were smaller, adhered less well, and migrated quicker than cells derived from strongly fluorescent tumor mass. CONCLUSIONS: GBM tumors are biomechanically heterogeneous. Selecting multiple populations and broad location sampling are therefore important to consider for drug testing.

8.
Nat Phys ; 16(7): 802-809, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32641972

RESUMO

The directed migration of cell collectives is essential in various physiological processes, such as epiboly, intestinal epithelial turnover, and convergent extension during morphogenesis as well as during pathological events like wound healing and cancer metastasis. Collective cell migration leads to the emergence of coordinated movements over multiple cells. Our current understanding emphasizes that these movements are mainly driven by large-scale transmission of signals through adherens junctions. In this study, we show that collective movements of epithelial cells can be triggered by polarity signals at the single cell level through the establishment of coordinated lamellipodial protrusions. We designed a minimalistic model system to generate one-dimensional epithelial trains confined in ring shaped patterns that recapitulate rotational movements observed in vitro in cellular monolayers and in vivo in genitalia or follicular cell rotation. Using our system, we demonstrated that cells follow coordinated rotational movements after the establishment of directed Rac1-dependent polarity over the entire monolayer. Our experimental and numerical approaches show that the maintenance of coordinated migration requires the acquisition of a front-back polarity within each single cell but does not require the maintenance of cell-cell junctions. Taken together, these unexpected findings demonstrate that collective cell dynamics in closed environments as observed in multiple in vitro and in vivo situations can arise from single cell behavior through a sustained memory of cell polarity.

9.
Proc Natl Acad Sci U S A ; 117(17): 9377-9383, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32284424

RESUMO

Epithelial monolayers are two-dimensional cell sheets which compartmentalize the body and organs of multicellular organisms. Their morphogenesis during development or pathology results from patterned endogenous and exogenous forces and their interplay with tissue mechanical properties. In particular, bending of epithelia is thought to result from active torques generated by the polarization of myosin motors along their apicobasal axis. However, the contribution of these out-of-plane forces to morphogenesis remains challenging to evaluate because of the lack of direct mechanical measurement. Here we use epithelial curling to characterize the out-of-plane mechanics of epithelial monolayers. We find that curls of high curvature form spontaneously at the free edge of epithelial monolayers devoid of substrate in vivo and in vitro. Curling originates from an enrichment of myosin in the basal domain that generates an active spontaneous curvature. By measuring the force necessary to flatten curls, we can then estimate the active torques and the bending modulus of the tissue. Finally, we show that the extent of curling is controlled by the interplay between in-plane and out-of-plane stresses in the monolayer. Such mechanical coupling emphasizes a possible role for in-plane stresses in shaping epithelia during morphogenesis.


Assuntos
Epitélio/fisiologia , Animais , Fenômenos Biomecânicos , Adesão Celular , Linhagem Celular , Cães , Elasticidade , Estresse Mecânico
10.
Proc Natl Acad Sci U S A ; 117(5): 2506-2512, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-31964823

RESUMO

Blebs and pseudopods can both power cell migration, with blebs often favored in tissues, where cells encounter increased mechanical resistance. To investigate how migrating cells detect and respond to mechanical forces, we used a "cell squasher" to apply uniaxial pressure to Dictyostelium cells chemotaxing under soft agarose. As little as 100 Pa causes a rapid (<10 s), sustained shift to movement with blebs rather than pseudopods. Cells are flattened under load and lose volume; the actin cytoskeleton is reorganized, with myosin II recruited to the cortex, which may pressurize the cytoplasm for blebbing. The transition to bleb-driven motility requires extracellular calcium and is accompanied by increased cytosolic calcium. It is largely abrogated in cells lacking the Piezo stretch-operated channel; under load, these cells persist in using pseudopods and chemotax poorly. We propose that migrating cells sense pressure through Piezo, which mediates calcium influx, directing movement with blebs instead of pseudopods.


Assuntos
Dictyostelium/citologia , Dictyostelium/metabolismo , Canais Iônicos/metabolismo , Proteínas de Protozoários/metabolismo , Pseudópodes/metabolismo , Fenômenos Biomecânicos , Movimento Celular , Citoplasma/química , Citoplasma/genética , Citoplasma/metabolismo , Dictyostelium/química , Dictyostelium/genética , Canais Iônicos/genética , Mecanotransdução Celular , Miosina Tipo II/genética , Miosina Tipo II/metabolismo , Pressão , Proteínas de Protozoários/genética , Pseudópodes/genética
11.
Nat Mater ; 19(1): 109-117, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31451778

RESUMO

Throughout embryonic development and adult life, epithelia are subjected to compressive deformations. While these have been shown to trigger mechanosensitive responses such as cell extrusion and differentiation, which span tens of minutes, little is known about how epithelia adapt to compression over shorter timescales. Here, using suspended epithelia, we uncover the immediate response of epithelial tissues to the application of in-plane compressive strains (5-80%). We show that fast compression induces tissue buckling followed by actomyosin-dependent tissue flattening that erases the buckle within tens of seconds, in both mono- and multi-layered epithelia. Strikingly, we identify a well-defined limit to this response, so that stable folds form in the tissue when compressive strains exceed a 'buckling threshold' of ~35%. A combination of experiment and modelling shows that this behaviour is orchestrated by adaptation of the actomyosin cytoskeleton as it re-establishes tissue tension following compression. Thus, tissue pre-tension allows epithelia to both buffer against deformation and sets their ability to form and retain folds during morphogenesis.


Assuntos
Actomiosina/química , Epitélio/fisiologia , Animais , Caderinas/fisiologia , Força Compressiva , Citoesqueleto , Cães , Elasticidade , Células Epiteliais/citologia , Epitélio/embriologia , Proteínas de Fluorescência Verde , Células Madin Darby de Rim Canino , Microscopia Confocal , Modelos Biológicos , Morfogênese , Estresse Mecânico , Viscosidade
12.
Nat Phys ; 15(8): 839-847, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33569083

RESUMO

Epithelial monolayers are one-cell thick tissue sheets that line most of the body surfaces, separating internal and external environments. As part of their function, they must withstand extrinsic mechanical stresses applied at high strain rates. However, little is known about how monolayers respond to mechanical deformations. Here, by subjecting suspended epithelial monolayers to stretch, we find that they dissipate stresses on a minute timescale and that relaxation can be described by a power law with an exponential cut-off at timescales larger than ~10 s. This process involves an increase in monolayer length, pointing to active remodelling of cellular biopolymers at the molecular scale during relaxation. Strikingly, monolayers consisting of tens of thousands of cells relax stress with similar dynamics to single rounded cells and both respond similarly to perturbations of the actomyosin cytoskeleton. By contrast, cell-cell junctional complexes and intermediate filaments do not relax tissue stress, but form stable connections between cells, allowing monolayers to behave rheologically as single cells. Taken together our data show that actomyosin dynamics governs the rheological properties of epithelial monolayers, dissipating applied stresses, and enabling changes in monolayer length.

13.
Dev Cell ; 43(4): 480-492.e6, 2017 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-29107560

RESUMO

Under conditions of homeostasis, dynamic changes in the length of individual adherens junctions (AJs) provide epithelia with the fluidity required to maintain tissue integrity in the face of intrinsic and extrinsic forces. While the contribution of AJ remodeling to developmental morphogenesis has been intensively studied, less is known about AJ dynamics in other circumstances. Here, we study AJ dynamics in an epithelium that undergoes a gradual increase in packing order, without concomitant large-scale changes in tissue size or shape. We find that neighbor exchange events are driven by stochastic fluctuations in junction length, regulated in part by junctional actomyosin. In this context, the developmental increase of isotropic junctional actomyosin reduces the rate of neighbor exchange, contributing to tissue order. We propose a model in which the local variance in tension between junctions determines whether actomyosin-based forces will inhibit or drive the topological transitions that either refine or deform a tissue.


Assuntos
Junções Aderentes/fisiologia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Epitélio/metabolismo , Miosina Tipo II/metabolismo , Actomiosina/metabolismo , Animais , Caderinas/metabolismo
14.
R Soc Open Sci ; 4(8): 161007, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28878958

RESUMO

Heterogeneity within tumour cell populations is commonly observed in most cancers. However, its impact on metastatic dissemination, one of the primary determinants of the disease prognosis, remains poorly understood. Working with a simplified numerical model of tumour spheroids, we investigated the impact of mechanical heterogeneity on the onset of tumour invasion into surrounding tissues. Our work establishes a positive link between tumour heterogeneity and metastatic dissemination, and recapitulates a number of invasion patterns identified in vivo, such as multicellular finger-like protrusions. Two complementary mechanisms are at play in heterogeneous tumours. A small proportion of stronger cells are able to initiate and lead the escape of cells, while collective effects in the bulk of the tumour provide the coordination required to sustain the invasive process through multicellular streaming. This suggests that the multicellular dynamics observed during metastasis is a generic feature of mechanically heterogeneous cell populations and might rely on a limited and generic set of attributes.

15.
Mol Biol Cell ; 28(6): 809-816, 2017 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-28122819

RESUMO

The chemical, physical, and mechanical properties of the extracellular environment have a strong effect on cell migration. Aspects such as pore size or stiffness of the matrix influence the selection of the mechanism used by cells to propel themselves, including by pseudopods or blebbing. How a cell perceives its environment and how such a cue triggers a change in behavior are largely unknown, but mechanics is likely to be involved. Because mechanical conditions are often controlled by modifying the composition of the environment, separating chemical and physical contributions is difficult and requires multiple controls. Here we propose a simple method to impose a mechanical compression on individual cells without altering the composition of the matrix. Live imaging during compression provides accurate information about the cell's morphology and migratory phenotype. Using Dictyostelium as a model, we observe that a compression of the order of 500 Pa flattens the cells under gel by up to 50%. This uniaxial compression directly triggers a transition in the mode of migration from primarily pseudopodial to bleb driven in <30 s. This novel device is therefore capable of influencing cell migration in real time and offers a convenient approach with which to systematically study mechanotransduction in confined environments.


Assuntos
Mecanotransdução Celular/fisiologia , Suporte de Carga/fisiologia , Pesos e Medidas/instrumentação , Movimento Celular/fisiologia , Dictyostelium/fisiologia , Matriz Extracelular , Pseudópodes , Estresse Mecânico
16.
Curr Opin Cell Biol ; 42: 113-120, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27371889

RESUMO

Cellularised materials are composed of cells interfaced through specialised intercellular junctions that link the cytoskeleton of one cell to that of its neighbours allowing for transmission of forces. Cellularised materials are common in early development and adult tissues where they can be found in the form of cell sheets, cysts, or amorphous aggregates and in pathophysiological conditions such as cancerous tumours. Given the growing realisation that forces can regulate cell physiology and developmental processes, understanding how cellularised materials deform under mechanical stress or dissipate stress appear as key biological questions. In this review, we will discuss the dynamic mechanical properties of cellularised materials devoid of extracellular matrix.


Assuntos
Células/metabolismo , Animais , Fenômenos Biomecânicos , Agregação Celular , Humanos , Modelos Biológicos , Morfogênese , Reologia
17.
J R Soc Interface ; 13(118)2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27170648

RESUMO

The combination of laterally activating and inhibiting feedbacks is well known to spontaneously generate spatial organization. It was introduced by Gierer and Meinhardt as an extension of Turing's great insight that two reacting and diffusing chemicals can spontaneously drive spatial morphogenesis per se In this study, we develop an accessible nonlinear and discrete probabilistic model to study simple generalizations of lateral activation and inhibition. By doing so, we identify a range of modes of morphogenesis beyond the familiar Turing-type modes; notably, beyond stripes, hexagonal nets, pores and labyrinths, we identify labyrinthine highways, Kagome lattices, gyrating labyrinths and multi-colour travelling waves and spirals. The results are discussed within the context of Turing's original motivating interest: the mechanisms which underpin the morphogenesis of living organisms.


Assuntos
Modelos Teóricos
18.
Cell Rep ; 15(9): 2076-88, 2016 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-27210753

RESUMO

Collective cell migration is fundamental for life and a hallmark of cancer. Neural crest (NC) cells migrate collectively, but the mechanisms governing this process remain controversial. Previous analyses in Xenopus indicate that cranial NC (CNC) cells are a homogeneous population relying on cell-cell interactions for directional migration, while chick embryo analyses suggest a heterogeneous population with leader cells instructing directionality. Our data in chick and zebrafish embryos show that CNC cells do not require leader cells for migration and all cells present similar migratory capacities. In contrast, laser ablation of trunk NC (TNC) cells shows that leader cells direct movement and cell-cell contacts are required for migration. Moreover, leader and follower identities are acquired before the initiation of migration and remain fixed thereafter. Thus, two distinct mechanisms establish the directionality of CNC cells and TNC cells. This implies the existence of multiple molecular mechanisms for collective cell migration.


Assuntos
Movimento Celular , Crista Neural/citologia , Crânio/citologia , Tronco/fisiologia , Animais , Comunicação Celular , Divisão Celular , Forma Celular , Galinhas , Xenopus laevis , Peixe-Zebra
19.
Rev Sci Instrum ; 87(2): 025104, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26931888

RESUMO

Open source hardware has the potential to revolutionise the way we build scientific instruments; with the advent of readily available 3D printers, mechanical designs can now be shared, improved, and replicated faster and more easily than ever before. However, printed parts are typically plastic and often perform poorly compared to traditionally machined mechanisms. We have overcome many of the limitations of 3D printed mechanisms by exploiting the compliance of the plastic to produce a monolithic 3D printed flexure translation stage, capable of sub-micron-scale motion over a range of 8 × 8 × 4 mm. This requires minimal post-print clean-up and can be automated with readily available stepper motors. The resulting plastic composite structure is very stiff and exhibits remarkably low drift, moving less than 20 µm over the course of a week, without temperature stabilisation. This enables us to construct a miniature microscope with excellent mechanical stability, perfect for time-lapse measurements in situ in an incubator or fume hood. The ease of manufacture lends itself to use in containment facilities where disposability is advantageous and to experiments requiring many microscopes in parallel. High performance mechanisms based on printed flexures need not be limited to microscopy, and we anticipate their use in other devices both within the laboratory and beyond.

20.
Nat Commun ; 6: 7683, 2015 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-26158873

RESUMO

Closure of wounds and gaps in tissues is fundamental for the correct development and physiology of multicellular organisms and, when misregulated, may lead to inflammation and tumorigenesis. To re-establish tissue integrity, epithelial cells exhibit coordinated motion into the void by active crawling on the substrate and by constricting a supracellular actomyosin cable. Coexistence of these two mechanisms strongly depends on the environment. However, the nature of their coupling remains elusive because of the complexity of the overall process. Here we demonstrate that epithelial gap geometry in both in vitro and in vivo regulates these collective mechanisms. In addition, the mechanical coupling between actomyosin cable contraction and cell crawling acts as a large-scale regulator to control the dynamics of gap closure. Finally, our computational modelling clarifies the respective roles of the two mechanisms during this process, providing a robust and universal mechanism to explain how epithelial tissues restore their integrity.


Assuntos
Actomiosina/metabolismo , Movimento Celular/fisiologia , Células Epiteliais/fisiologia , Animais , Simulação por Computador , Cães , Drosophila melanogaster , Epitélio , Imunofluorescência , Técnicas In Vitro , Microscopia Intravital , Terapia a Laser , Células Madin Darby de Rim Canino , Microcirurgia , Cicatrização/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...